
Oracle System Performance Group Technical Paper, March 7, 1996

Configuring Oracle Server for VLDB

Cary V. Millsap
Oracle Corporation

March 7, 1996

This paper will help the reader configure a very large Oracle Server database (VLDB) for high performance
and high availability with low maintenance. Configuration issues that are discussed include decisions about
database block size, RAID technology and raw devices, redo log files, standby databases, tablespace parti-
tioning, storage parameters, and rollback segments. This paper explores the technologies and trade-off
constraints associated with these issues and presents technically detailed methods for optimizing a configu-
ration within these trade-offs.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for
direct commercial advantage, the Oracle Corporation copyright notice and the title of the publication and its data appear, and
notice is given that copying is by permission of Oracle Corporation. To copy otherwise, or to republish, requires a fee and/or
specific permission.
 1996 Oracle Corporation. No Oracle part number has yet been assigned.

2 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

Contents
1. INTRODUCTION

1.1 Operational Complexity
1.2 High Performance
1.3 High Availability
1.4 Overcoming VLDB Challenges

2. ORACLE BLOCK SIZE
2.1 Reducing I/O Load
2.2 Improving Space Efficiency
2.3 Preventing Concurrency Bottlenecks
2.4 Trade-Offs

3. DISK CONFIGURATION
3.1 Structured Configuration Analysis
3.2 RAID
3.3 Stripe Size
3.4 Array Size
3.5 Raw Devices
3.6 Oracle Configurations

4. REDO LOG FILES
4.1 Performance/Availability Trade-Offs
4.2 Redo Log File Placement
4.3 Redo Log File Size
4.4 Redo Log File Quantity

5. STANDBY DATABASE CONFIGURATIONS
5.1 Disaster Recovery
5.2 Transaction Error Recovery

6. TABLESPACE PARTITIONING
6.1 Assigning Segments to Tablespaces

7. STORAGE PARAMETERS
7.1 Maxextents
7.2 Storage Parameter Attributes
7.3 Selecting Storage Parameters

8. ROLLBACK SEGMENTS
8.1 Rollback Segment Size
8.2 Rollback Segment Quantity

9. CONCLUSIONS

1. Introduction
VLDB is an acronym for very large database. What
constitutes “very large” means different things to
different people, but the label always conjures an
impression of difficulty and complexity, cost and
risk. VLDB is what people call the most formidable
databases that state of the art technology will sup-
port. It takes a lot of creativity, smart planning,
investment, and hard work to prevent an attempted
VLDB implementation from becoming a very large
disappointment.

1.1 Operational Complexity

Operational complexity is an obvious VLDB chal-
lenge. As the operator of a VLDB, you are
continually evaluating dozens of tightly interdepend-
ent parameters. The system will penalize attempts to
make drastic or arbitrary moves. Big objects and

time-consuming processes leave you little maneuver-
ability to get out of trouble, so you have to plan
carefully to avoid the trouble in the first place. The
livelihood of several hundreds or even thousands of
people depend upon your ability to make good deci-
sions quickly. It takes talent and hard work to do
these things well.

Many essential operational procedures like backup
and restore consume time proportional to the size of
the objects being manipulated. So for a very large
database, these essential operations take a very long
time. Mistakes become more costly as a database
grows. Repair operations—like reconfiguring a disk,
rebuilding a table, counting the rows in a table, un-
doing a transaction—might seem normal in a
smaller database, but they cannot be tolerated in a
VLDB. If an activity takes hours out of your opera-
tional uptime, you do what you must to avoid it.

1.2 High Performance

Other factors compound the difficulty. Consider data
access. You may be able to tolerate an inefficiently
written query that consumes 2 CPU seconds on a
high-powered modern system with 20 users, but you
cannot tolerate the same 2-second service time on a
system with 1,200 users all fighting for latches,
disks, and CPU cycles. Queries against VLDB data
must be exceptionally well tuned, or the whole world
falls apart.

There’s more. Many VLDBs become “VL” in the
first place because large numbers of simultaneous
users and batch programs induce high transaction
rates. Very high transaction rates put a lot of stress
on the I/O subsystems associated with redo genera-
tion and database writing. And very high process
concurrency puts a lot of stress on the latches and
locks designed to serialize access to critical re-
sources.

1.3 High Availability

The more you think about it, the harder it seems.
VLDBs are often the data sources driving mission
critical applications with very high availability re-
quirements. High-end database designers hear
“seven-by-twenty-four” until we’re nearly numb to
the idea of how monumentally difficult it is—in the
face of electrical and network failures, bad memory
boards and disk controllers, application and operat-
ing system bugs, software and hardware upgrades,
and occasionally even an imperfect operator—to
achieve only seconds or minutes of system downtime
each year. How does one detect and repair the logical

Configuring Oracle for VLDB • 3

Oracle System Performance Group Technical Paper, March 7, 1996

corruption of hundreds or even thousands of giga-
bytes of data that can be caused by an operator entry
error?

1.4 Overcoming VLDB Challenges

The way to overcome these challenges is to make
your database seem as small as possible. You opti-
mize both your configuration and your application to
reduce load at every opportunity. You choose data
structures that minimize query access I/O. You cre-
ate applications with the lightest transactions that
can possibly meet the application’s functional re-
quirements. You isolate the impact of component
failures to the smallest possible subset of your data.
You make your backup and recovery units as small
as possible.

There are several aspects to doing VLDB well, in-
cluding:

 • Optimizing the functional process flow

 • Optimizing the logical data model

 • Optimizing the schema

 • Constructing a reliable, high performance hard-
ware configuration

 • Optimizing the physical database configuration

 • Optimizing the applications SQL

 • Optimizing the operating system and Oracle
Server instance

 • Creating accurate and reliable operational pro-
cedures

In this paper, we investigate the physical database
configuration decisions required to build a successful
VLDB.

2. Oracle Block Size
One of life’s ironies is that on the day when your
Oracle Server experience is the least it will ever be,
you are required to type a value for the db_block_-
size database parameter which will follow that data-
base throughout its lifetime. It happens that the value
you choose for your Oracle database’s block size is of
profound importance to the performance of your
system. The following sections will alert you to some
of the trade-offs you should consider before choosing
the Oracle block size for your database.

Optimal Oracle block sizes for VLDB range from
4KB to 64KB. The most common VLDB block size

is probably 8KB, with 16KB as the runner-up. Ora-
cle Server implementations on systems capable of
very fast memory transfer of large memory objects
can benefit from 32KB Oracle blocks and
(theoretically at least) 64KB. Under no circum-
stances of which I am aware should a VLDB operate
with a 2KB block size, and there are only a few very
special cases in which a 4KB block size would be
appropriate for a VLDB. In [Millsap (1996)], I pres-
ent a much deeper technical description of the issues
we shall summarize here.1

2.1 Reducing I/O Load

The most important characteristic of the most diffi-
cult VLDB implementations in the world is the
enormous I/O load on these systems. The owners of
the best VLDBs in the world invest extensively into
any technique possible for reducing the I/O load on
their systems. Using big Oracle database blocks is
one simple technique for reducing some of this I/O
load.

 • I/O call overhead—The hardware fixed over-
head costs of any single I/O call dominate the
total time for fulfillment of the call. Manipulat-
ing fewer bigger Oracle blocks thus yields a
performance advantage over manipulating more
smaller blocks.

 • Index performance—Index performance is in-
versely proportional to the height of the B*-tree
index structure. Larger Oracle blocks allow for
storage of more keys per block, which yields
shallower, wider indexes with better search
performance.

 • Reduced chaining—Oracle Server uses chaining
to store table, data cluster, or hash cluster rows
that will not fit into a single database block.
Chaining of row pieces across multiple blocks
results in multiple I/O calls per manipulated
row. Bigger Oracle blocks reduce the probability
that a row will require chaining, hence reducing
the total number of I/O calls in the system.

2.2 Improving Space Efficiency

Oracle Server stores a small amount of overhead in
each Oracle block whose size is constant, irrespec-

1 Rather than keep you in suspense while you try to locate
an Oracle Corporation internal document that may not be
easy to find, the special case for which 4KB blocks may be
appropriate is the VLDB that consists of a huge number
(thousands) of very small segments (smaller than 100KB
each).

4 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

tive of the amount of data stored within the block.
Thus, the fewer blocks stored in a database, the less
total fixed overhead that database will consume. For
very small segments, the fixed overhead savings can
be overwhelmed by wasted space present in the last
few unused blocks of a segment, but this waste is
itself generally overwhelmed by imprecise storage
parameters.2 For very large segments, using a larger
Oracle block size saves roughly 2–6 percent in total
database volume. This savings translates to valuable
performance and operational cost benefits, especially
noticeable in backup/restore times.

2.3 Preventing Concurrency Bottlenecks

Using bigger Oracle blocks increases the risk of con-
currency bottlenecks unless the physical database
architect understands how to use the initrans and
maxtrans storage parameters. The value of initrans
should be set to the maximum number of transac-
tions that will be expected to simultaneously transact
within the block.3 Hence, if you were to rebuild your
database with k times larger Oracle blocks, then you
should increase your initrans values by a factor of k
as well. To enable dynamic growth of the
“transaction entry table list,” you must also set max-
trans to a value larger than initrans .4

Failing to choose proper values of initrans or max-
trans for your database segments can cause waits in
user sessions. Sessions that update Oracle blocks
with this problem will prevent other sessions from
obtaining an entry in the block’s data structure that
enables reconstruction of read-consistent queries in
that block. The so-called ITL contention that results
can be detected by database administrators who
monitor v$lock. They will see a session waiting for a
TX (transaction enqueue) lock in lock mode 4
(share).

You can completely avoid these problems by using
sound techniques described in the standard Oracle
Server documentation for setting initrans and max-
trans for database segments.

2 As we shall discuss later, having storage parameter im-
precision is actually a good trade-off compared to the
operational costs of administering very precise storage
parameters in most VLDBs.
3 Transact here means “performs an insert, update, de-
lete, or select…for update.”
4 This “transaction entry table” is formally called the in-
terested transactions list, or ITL.

2.4 Trade-Offs

Although larger-than-normal Oracle block sizes are
good for VLDBs, there are limits to the maximum
Oracle block size you should choose.

 • Physical I/O size—The size of an Oracle data-
base block should not exceed the maximum size
of a physical read. Be aware also that the size of
an operating system physical read also con-
strains the actual size of batched reads on full-
table scans. For example, if your Oracle block
size is 32KB and your multiblock read count is
32, you very likely will not be fetching
1MB = 32 × 32KB per I/O call.

 • Redo size—The Oracle Server redo log writer
(LGWR) writes entire Oracle blocks to the on-line
redo log files for transactions that are executed
on tablespaces that are in hot backup mode.
Hence, your desire to reduce your system’s redo
volume during hot backups may motivate you to
limit your Oracle database block size.

 • Memory copy size—If you choose your Oracle
block size to be larger than the amount of mem-
ory that your operating system or hardware
architecture will support in one operation, you
may note higher CPU loads and performance
degradation associated with manipulating large
blocks in the SGA.

 • Concurrency limitations—The maximum allow-
able value for initrans and maxtrans is 255. If
your Oracle block size gets so large that more
than 255 transactions will routinely attempt to
update a single Oracle block at the same time,
then your block size is too large. The chances of
this occurring to you are slim to none: if you
actually tried to put 255 concurrent transactions
on one block, the resulting latch contention
would be so severe that you’d have to increase
pctfree for the segment.

3. Disk Configuration
A good database server is at its heart a reliable, high-
performance I/O manager that must operate within
its owner’s economic constraints. Understanding this
makes it easy to understand why I/O subsystem con-
figuration is such an important topic for the architect
of any VLDB application.

3.1 Structured Configuration Analysis

At the highest level of abstraction, defining system
requirements is easy, because everyone has the same

Configuring Oracle for VLDB • 5

Oracle System Performance Group Technical Paper, March 7, 1996

three desires: fast, reliable, and inexpensive. How-
ever, when we convert these general philosophical
goals into something real, we are confronted with
trade-off decisions. To navigate these conflicts, you
must do two things well: (1) know your goals, and
(2) know your technology. The trick is to find the
right mixture of fast, reliable, and inexpensive to
meet your specific business needs. It seems that the
right mixture is never the same for you as it is for
your neighbor.

Architectural constraints come at us from two direc-
tions: (1) there are economic constraints, and
(2) there are technology constraints. Economic con-
straints you already understand very well, and I’m
sure you wish you were shed of them. However, even
in an imaginary universe in which you’re permitted
to buy as much hardware and software as you could
possibly want, you’d still face technology con-
straints.

For example, let’s say that you have an OLTP appli-
cation, and you have optimized your disk
configuration for Oracle Server data files to give
uncompromised random I/O performance at the ex-
pense of some sequential I/O performance
degradation. This may seem like a low-impact trade-
off for OLTP because Oracle Server OLTP I/O to
data files consists predominantly of massive numbers
of well behaved indexed or hash-based reads, and
massive numbers of scattered DBWR writes.

However, your first index rebuild event on a disk
array containing data accessed at a high concurrency
level may well consume 300–500 percent more time
than if you had used a different disk configuration.
Your decision intended to optimize on-line perform-
ance without compromise has directly reduced your
system’s availability by extending the duration of
index unavailability during the index rebuild.

There are hundreds of lessons like this one that make
us appreciate the importance and difficulty of
knowing your requirements and knowing your tech-
nology. The most important tool you can have is a
structured analysis method that helps you ask all the
right questions. In this paper, we will structure our
analysis of I/O subsystem construction by decompos-
ing performance, availability, and cost as follows:

Performance
random read performance
random write performance
sequential read performance
sequential write performance
impact of concurrency

Availability
outage frequency
outage duration
performance degradation during outage

Cost
acquisition cost
operational cost

In this paper, we evaluate several tools and tech-
niques in the context of these categories, which are
described in the following sections.

3.1.1 Performance

 • Random read performance—Examples include
indexed or hash-based queries, and rollback
segment reads. Presumably this category in-
cludes the bulk of the read calls executed on a
high-volume OLTP system. For a data ware-
house, this category may represent only a small
fraction of total load.

 • Random write performance—Examples include
all DBWR writes. This category accounts for a
significant proportion of total write calls on an
OLTP system during normal operation. There
may be little or no regular random write activity
on a data warehouse.

 • Sequential read performance—Examples in-
clude backups, full-table scans, index creations,
parallel queries, temporary segment reads, and
recovery and roll-forward from archived redo
log files. Even for well optimized OLTP appli-
cations, this category still accounts for a
considerable proportion of total load, especially
on OLTP systems with heavy batch processes.
On a data warehouse, sequential reads may ac-
count for nearly all of the system’s read calls.

 • Sequential write performance—Examples in-
clude LGWR writes, rollback segment writes,
temporary segment writes, direct-path data
loads, index creations, tablespace creations, and
data restore operations. Designers who are fo-
cused on transaction and query processing
sometimes forget this category. But initial data
uploads and operational maintenance in any
type of Oracle database generate a lot of se-
quential-write load.

 • Impact of concurrency—In each of the catego-
ries named above, the architect should consider
the impact of varying concurrency levels.

6 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

3.1.2 Availability

 • Outage frequency—Outage frequency is the
expected number of occurrences of a possible
outage per unit of time. Outage frequency is
specified with the MTTF (mean time to failure)
metric. For example, a disk drive with an MTTF
of 200,000 hours can be expected to fail only
once every 23 years.

 • Outage duration—Outage cost may be ex-
pressed in dollars, which in turn can be
expressed as a function of outage duration. Out-
age cost for a given event is proportional to the
MTTR (mean time to repair) metric for that
event—the longer the outage duration, the
higher the outage cost.

 • Performance degradation during outage—
Different disk configurations yield different
performance levels during outage events. Some
configurations have no fault tolerance whatso-
ever; some configurations provide service during
fault at degraded performance levels; and some
configurations provide performance at full
strength during different types of outage. It is
important to match your hardware’s outage deg-
radation levels with your application’s
requirements.

3.1.3 Cost

 • Acquisition cost—Acquisition cost is the eco-
nomic cost of purchasing the system.

 • Operational cost—Operational cost is the cost
of running and maintaining the system. Opera-
tional costs include both maintenance costs that
depend on the reliability of the system and ad-
ministrative costs that depend on the complexity
of the system. For example, a system that re-
quires less easily obtainable (e.g., smarter or
better trained) operators and repair technicians
will cost more to operate.

3.1.4 Analysis Method

Decomposing performance, reliability, and cost this
way gives us important tools to design a good sys-
tem. It allows us to evaluate the trade-offs both
within a category (e.g., random read performance vs.
sequential write performance) and understand one
category in terms of another (e.g., the strong link
between sequential write performance and outage
duration).

These categories also formalize the way we think
about our system. For example, understanding the

decomposition of reliability allows us to view the
dimensions of outage independently: (1) we can fo-
cus on reducing the frequency of an outage whose
cost we know we cannot tolerate, or (2) we can focus
our efforts on reducing the duration of an outage we
know we cannot prevent. And it reminds us that out-
age duration is partly a reliability issue and partly a
performance issue.

The following sections will help guide you through a
high-level analysis of the performance, availability,
and cost trade-offs in Oracle Server I/O subsystem
design. The aim of this section is to help you better
understand your goals and technology options to
help you make more informed decisions, so you can
get the best results from your investment.

3.2 RAID

In second place behind the human being, the most
unreliable mission-critical component of a comput-
ing system is the disk drive. To improve disk
reliability, most hardware vendors today market disk
array systems called RAID—redundant arrays of
inexpensive disks. RAID offers high-performance,
fault-resilient I/O subsystems using less expensive
disk drive technology than that found on traditional
high-availability mainframe systems.

The term RAID was created in a 1987 paper pub-
lished by Patterson, Gibson, and Katz at the
University of California. The numeric levels of
RAID represent different organizations of common
minicomputer disk technology to accomplish per-
formance and reliability goals at low cost.

The primary RAID levels that the Oracle VLDB
architect should understand are levels 0, 1, 0+1, 3,
and 5. Figure 1 summarizes the principal concepts of
these RAID configurations. Note that hardware ven-
dors can choose to implement RAID’s striping and
mirroring functions either in hardware or in soft-
ware. These choices affect the number and types of
special controllers required for implementation.

The performance advantages of RAID configurations
are stunning. By distributing physical I/Os uniformly
across an array of disk drives, striped RAID configu-
rations provide unmatched response time and
throughput statistics. A five-disk striped RAID 0
array can serve almost nine times as many random
I/Os as a configuration of five independent disks
with equivalent response times. The same five-disk
striped array can provide almost five times the se-
quential I/O throughput of an independent disk
configuration of equal size.

Configuring Oracle for VLDB • 7

Oracle System Performance Group Technical Paper, March 7, 1996

The reliability advantages of RAID are equally im-
pressive. A disk system using one hundred 200,000-
hour MTTF disk drives configured in a non-
redundant organization has a system mean time to
data loss (MTTDL) of less than 83 days. The same
100-disk system configured in a redundant RAID
organization has an MTTDL of about 26 years
[Chen et al. (1992), 161–163]. Mean-time-to-recover
advantages of RAID are excellent as well. You can
pull an active drive out of a RAID level 5 disk tray,
and the system will continue without missing a beat.

However, each RAID configuration bears unique
costs. You may find that the RAID configuration you
really need is too expensive, and that the only con-
figurations you can afford impose too many other
compromises. The Oracle system architect must
navigate a twisty maze of complex trade-offs when
deciding how to use RAID.

Several authors do a brilliant job of describing RAID
configurations and evaluating RAID organizations
on the basis of reliability, performance, and cost
[Chen et al. (1994); Gui (1993); Sun (1995); and
many others]. The following sections contain sum-
maries of these concepts with concrete
recommendations about when and how to use each
type of RAID configuration for Oracle Server appli-
cations.

3.2.1 Definitions

Studying RAID literature can be confusing because
the authors in the market seem to interpret the
definitions however they like. To make this paper as
simple as we can, let’s define some important terms
before going on.

 • Array—RAID configurations at levels 0, 0+1, 3,
and 5 group disks into collections called error
correction groups or disk arrays. We shall call a
group of disks that make up an error correction
group an array.

 • Stripe—Striping is a hardware or software ca-
pability in which logically contiguous data are
written in pieces that are distributed across the
disks in an array.5 These pieces are called
striping segments or stripes.

In reading this document, it will be important to
remember that an array is a collection of disks, and
that stripes are the pieces that are distributed across

5 Note that striping is spelled with one p, as opposed to
stripping with two p’s, which is what one does to old
paint.

an array. The following picture shows one disk array
containing five disks. Each disk contains five stripes,
for a total of 25 stripes in the entire picture.

RAID 5
controller

3.2.2 Nonredundant Striping (RAID Level 0)

RAID 0 is a nonredundant disk configuration that
may be striped. Properly configured striping yields
excellent I/O response times for high concurrency
random I/O and excellent throughput for low con-
currency sequential I/O. Selection of stripe size for
an array requires careful consideration of trade-off
constraints. We shall discuss the details of stripe size
optimization in a later section.

Nonredundant disk is useful only for environments
in which capital acquisition cost constraints out-
weigh system reliability requirements.

 • Random read performance—Excellent under all
concurrency levels if each I/O request fits within
a single striping segment. Using a stripe size
that is too small can cause dramatic perform-
ance break-down at high concurrency levels.

 • Random write performance—Same as random
read performance.

 • Sequential read performance—Excellent with
fine-grained striping at low concurrency levels.
Also excellent at high concurrency levels if each
I/O fits within a single striping segment. Using
stripe sizes that are too small causes dramatic
performance break-down at high concurrency
levels.

 • Sequential write performance—Same as se-
quential read performance.

 • Outage frequency—Poor. Any disk failure will
cause application outage requiring Oracle media
recovery for every application with data stored
in the failed disk’s array.

 • Outage duration—Poor. The duration of a
RAID 0 outage is the time required to detect the
failure, replace the disk drive, and perform
Oracle Server media recovery.

8 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

Host
adapter

RAID 5
controller

RAID 5

Host
adapter

RAID 0+1
controller

RAID 0+1

Host
adapter

Host
adapter

Duplexed
RAID 1

Host
adapter

RAID 1
controller

RAID 1

RAID 0 Host
adapter

RAID 0
controller

Disk without striping

Disk with block-level striping

b Disk with bit-level striping

AAAA
AAAA

A
A Drive synchronization cabling

I/O bus

Shading indicates redundancy

RAID 3

b bbbb AAA
AAA

AAA
AAA

AAA
AAA

AAA
AAA

RAID 3
controller

Host
adapter

Figure 1. Overview of RAID hardware architectures.

Configuring Oracle for VLDB • 9

Oracle System Performance Group Technical Paper, March 7, 1996

 • Performance degradation during outage—Poor.
Any disk failure incurs total blackout for all
applications requiring use of the array contain-
ing the failed disk until Oracle media recovery is
complete.

 • Acquisition cost—Excellent. RAID 0 is the least
expensive of all RAID configurations to imple-
ment.

 • Operational cost—Fair to poor. Operational
costs of dealing with frequent media recoveries
may outweigh the acquisition cost advantages of
RAID 0 over redundant configurations. Increas-
ing capacity requires either purchase of one or
more entire arrays, or reconfiguration of the ex-
isting arrays. Training is required to configure
striped disk arrays for optimal performance.

3.2.3 Mirroring (RAID Level 1)

Mirroring is the VLDB architect’s best tool for re-
ducing the frequency of disk outage. Mirrored disks
are systems in which identical copies of your data are
written to two or more disks on every write call,
enabling your application to keep running as long as
at least one image is left undisturbed.

In spite of some write performance degradation rela-
tive of mirroring relative to nonredundant
configurations, mirrored disks yield the best write
performance of the fault resilient disk configura-
tions. Mirroring is especially valuable for Oracle
data files holding files with high write rates. Many
Oracle architects use mirroring to protect on-line
and archived redo log files even when cost con-
straints prohibit mirroring the entire disk subsystem.

Multiplexing host adapters, busses, and power sup-
plies makes a mirrored system even more impervious
to hardware failure. In a multiplexed mirrored con-
figuration, n-way redundant writes are performed in
software to n identical host adapters. Several Oracle
customers today use three-way multiplexed (“triple-
mirrored”) configurations to provide flexibility for
data restore operations. Triple mirroring provides
the normal fault resilience of duplexed mirroring
and allows a database administrator to restore the
database to a past point in time without using tapes.
We shall discuss one triple mirroring technique in a
later section.

 • Random read performance—Good. If the im-
plementation uses read-optimizing RAID 1
controllers, then marginally better than an inde-
pendent disk; otherwise, identical to an
independent disk. An optimizing RAID 1 con-

troller will service a read request by reading
only the image whose drive requires the smallest
I/O setup cost, leaving the other disk(s) in the
mirror group free to service other read requests
in parallel.

 • Random write performance—Good. If the im-
plementation uses read-optimizing RAID 1
controllers, then marginally worse than an inde-
pendent disk; otherwise, identical to an
independent disk. Although the mirrored writes
can execute in parallel, the speed of a write call
is constrained by the speed of the slowest of the
mirrored writes. The cost of an n-way RAID 1
write is max(w1, w2, …, wn), where wi is the cost
of writing to the ith mirror piece. Read-
optimizing controllers desynchronize mirrored
disk drive states, making wi ≠ wj for i ≠ j.

 • Sequential read performance—Fair. See ran-
dom read performance. Throughput is limited to
the speed of one disk.

 • Sequential write performance—Fair. See ran-
dom write performance. Throughput is limited
to the speed of one disk.

 • Outage frequency—Excellent. An n-way mir-
rored disk system can withstand up to n– 1 disk
failures per mirror set without incurring appli-
cation outage. However, RAID 1 does not
eliminate the host adapter, I/O bus, RAID con-
troller, power supply, firmware bugs, or software
bugs as single points of failure. Multiplexing
eliminates the hardware failure points. An n-
way multiplexed disk system can withstand up
to n– 1 host adapter, I/O bus, or power supply
failures per plex, and up to n– 1 disk failures
per mirror set without incurring application out-
age. Multiplexed mirrored disk is the most fault-
resilient configuration available.

 • Outage duration—Excellent. The duration of a
partial outage involving n– 1 or fewer drives in
one or more mirror groups or n– 1 components
in a multiplex is the amount of time required to
replace the failed component. During this time
there will be no application outage. The duration
of a data loss outage involving n drives in a mir-
ror group or n components in a plex is the same
as the duration of a RAID 0 outage. During this
time, there will be full application blackout.

 • Performance degradation during outage—
Excellent. There is no performance degradation
incurred by taking a RAID 1 disk off-line. How-

10 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

ever, upon replacement of a failed drive, the
resilvering operation for the fresh drive will
compete with all other I/O to the repaired mirror
group, causing significant performance degra-
dation for applications reading or writing the
repaired mirror group for the duration of the re-
construction. On an n-way multiplexed
implementation, up to n– 1 host adapter, I/O
bus, or power supply failures incur no perform-
ance degradation during outage.

 • Acquisition cost—Poor. Capacity cost for n-way
mirroring is n times that of equivalent RAID 0
capacity. RAID 1 implementations require spe-
cial RAID 1 controllers in addition to the same
number of host adapters required by RAID 0
implementations. n-way multiplexed RAID 1
requires n times as many host adapters as
RAID 1 but no special RAID 1 controllers. Total
multiplexed disk capacity is constrained by I/O
subsystem host adapter bay capacity because n-
way multiplexing consumes n times more
adapter slots than non-multiplexed configura-
tions.

 • Operational cost—Fair. Costs include training
of staff in effective administration of the mir-
rored system, costs to develop custom software
to integrate mirroring procedures into scheduled
maintenance operations, and so on.

3.2.4 Striping and Mirroring (RAID Level 0+1)

Striping and mirroring can be combined to form
what many people today call “RAID 0+1.”6

RAID 0+1 hybridizes all of the advantages and dis-
advantages of RAID levels 0 and 1: excellent
performance and excellent fault resilience with high
acquisition cost. Duplexed mirroring of striped disk
arrays is the superior configuration for mission criti-
cal, high volume OLTP applications.

 • Random read performance—Excellent under all
concurrency levels if each I/O request fits within
a single striping segment. Using a stripe size
that is too small can cause dramatic perform-
ance break-down at high concurrency levels.
Marginally better than RAID 0 if using RAID 1
read optimization.

6 Note that the inventors of RAID terminology include the
provision for “RAID 0+1” within the term RAID 1 itself
[Chen et al. (1994), 153]. Hardware vendors appear to
have guaranteed the term “RAID 0+1” a rich and happy
life.

 • Random write performance—Excellent, with
excellent high-concurrency performance. Mar-
ginally worse than RAID 0, but much better
than RAID 5. See section on RAID 1 random
write performance.

 • Sequential read performance— Excellent under
all concurrency levels if each I/O request fits
within a single striping segment. Using a stripe
size that is too small can cause dramatic per-
formance break-down at high concurrency
levels. Marginally better than RAID 0 if using
RAID 1 read optimization.

 • Sequential write performance—Excellent.
Marginally worse than RAID 0, but better than
RAID 5. See section on RAID 1 random write
performance. Using a stripe size that is too
small can cause dramatic performance break-
down at high concurrency levels.

 • Outage frequency—Excellent. Same as RAID 1.

 • Outage duration—Excellent. Same as RAID 1.

 • Performance degradation during outage—
Excellent. Same as RAID 1.

 • Acquisition cost—Poor. Same as RAID 1 with
potential added cost for striping hardware or
software.

 • Operational cost—Fair. Optimizing striped
configurations requires training, as does inte-
grating mirror operations into maintenance
procedures. Increasing disk capacity requires
addition of entire arrays or reconfiguration of
existing arrays.

3.2.5 Bit-Interleaved Parity (RAID Level 3)

RAID 3 is one answer to the high cost of 1-for-1
redundancy of RAID 1. In a RAID 3 configuration,
disks are organized into arrays in which one disk is
dedicated to storage of parity data for the other
drives in the array. The RAID 3 striping unit is 1 bit.
The configuration has the property that any single
data drive’s data can be reconstructed given the data
of the remaining drives on its array using an exclu-
sive-or operation.

The primary advantage of RAID 3 is that its acqui-
sition cost is much less than that of RAID 1.
However, its poor random I/O performance and its
poor performance during partial outage make
RAID 3 generally unsuitable for most Oracle Server
applications. RAID 3 best suits an Oracle application
whose economic constraints outweigh its reliability

Configuring Oracle for VLDB • 11

Oracle System Performance Group Technical Paper, March 7, 1996

requirements, whose reads are mostly poorly opti-
mized full-table scans, and which performs virtually
no inserts, updates, or deletes.

 • Random read performance—Poor. Drive syn-
chronization prohibits parallelization of small
random read calls. Poor high-concurrency per-
formance.

 • Random write performance—Poor. Drive syn-
chronization also prohibits parallelization of
small random write calls. Poor high-
concurrency performance.

 • Sequential read performance—Very good for
low concurrency applications; worse for higher
concurrency applications.

 • Sequential write performance—Very good for
low concurrency applications; worse for higher
concurrency applications.

 • Outage frequency—Good. A RAID 3 system
can withstand the loss of any single disk on a
given array without incurring application out-
age. Loss of two disks on an array incurs outage
that must be repaired by media recovery. Note
that the resilience of a RAID 3 implementation
degrades as the number of disks per array in-
creases, and that this resilience degradation in
fact occurs at a higher rate than the acquisition
savings noted above. For example, doubling the
number of drives in a RAID 3 array from 5 to 10
will save approximately 14% in acquisition costs
(see section on RAID 3 acquisition cost), yet
doubling the array size increases the outage fre-
quency of an array by 100%.

 • Outage duration—Good. Duration of partial
outage caused by loss of one disk in an array is
the amount of time required to detect the failure
and replace the drive. Duration of full outage
caused by loss of two or more disks in an array,
a host adapter, bus, or other nonredundant com-
ponent includes the time required to perform
Oracle Server media recovery.

 • Performance degradation during outage—Fair.
Loss of a dedicated parity drive incurs no per-
formance penalty upon the application until the
drive is replaced. Loss of a data drive incurs a
significant performance penalty upon the appli-
cation before the drive is replaced because every
I/O to the array with the failed drive will require
a calculation in turn requiring I/O on every
other drive in the array. These I/Os cannot be
parallelized within an array. Upon replacement

of any failed RAID 3 drive, the I/O required to
reconstruct the data on the replacement drive
will compete with all other I/O to the array,
causing performance degradation.

 • Acquisition cost—Fair. Disk capacity cost is
g/(g– 1) times the cost of equivalent RAID 0 ca-
pacity, where g is the number of disks in an
array, plus the additional cost of special drive-
synchronized disks and special controllers re-
quired for RAID 3. Thus, the acquisition cost of
RAID 3 is always greater than the cost of
RAID 0, but generally less than RAID 1 for
g> 2. Note that total capacity cost is reduced by
increasing the number of disks per array. For
example, using 5 disks per array results in a disk
capacity cost of 125% times the cost of equiva-
lent RAID 0 capacity, but using 10 disks per
array results in a disk capacity cost of only
111% the cost of RAID 0. RAID 3 implementa-
tions also require special RAID 3 controllers in
addition to the host adapters required by
RAID 0.

 • Operational cost—Fair. Training required to
create operational procedures dealing with dif-
ferent outage events. Capacity growth requires
purchase of entire arrays or reconfiguration of
existing arrays.

3.2.6 Block-Interleaved with Distributed Parity
(RAID Level 5)

RAID 5 is similar to RAID 3 except that RAID 5
striping segment sizes are configurable, and RAID 5
distributes parity across all the disks in an array. A
RAID 5 striping segment contains either data or
parity. Any write to a RAID 5 stripe requires re-
source intensive six-step process [Sun (1995)]:

 1. Read the blocks to be overwritten.

 2. Read the corresponding parity blocks.

 3. Remove the contribution of the data to be over-
written from the parity data.

 4. Add the contribution to parity of the new data.

 5. Write the new parity data.

 6. Write the new data.

Battery-backed cache greatly reduces the impact of
this overhead for write calls, but its effectiveness is
implementation dependent. Large write-intensive
batch jobs generally fill the cache quickly, reducing
its ability to offset the write-performance penalty
inherent in the RAID 5 definition.

12 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

RAID 5 is useful for reducing the cost of disk subsys-
tems for any data requiring good fault resilience with
high read rates, but not for data requiring high write
rates. Because of RAID 5’s aggressively poor write
performance, the attitude of many good VLDB archi-
tects toward RAID 5 is just say no. For read-
intensive VLDBs in which the media recovery time
penalty of poor write performance is not as impor-
tant as acquisition cost constraints, RAID 5 offers
acceptable performance at much lower cost than
RAID 1.

 • Random read performance—Excellent under all
concurrency levels if each I/O request fits within
a single striping segment. Using a stripe size
that is too small can cause dramatic perform-
ance break-down at high concurrency levels.

 • Random write performance—Poor. Worst at
high concurrency levels. The read-modify-write
cycle requirement of RAID 5’s parity implemen-
tation penalizes random writes by as much as an
order of magnitude compared to RAID 0. Disk
cache helps performance if the cache is large
enough to handle the concurrency level.

 • Sequential read performance—Excellent with
fine-grained striping at low concurrency levels.
Also excellent at high concurrency levels if each
I/O fits within a single striping segment. Using
stripe sizes that are too small causes dramatic
performance break-down at high concurrency
levels.

 • Sequential write performance—Fair for low
concurrency levels. Up to an order of magnitude
worse than RAID 0 for high concurrency levels.
Large writes tend to fill the RAID 5 disk cache,
reducing its ability to moderate poor write per-
formance. As with sequential reads, higher
concurrency levels degrade fine-grained striping
performance.

 • Outage frequency—Good. A RAID 5 system
can withstand the loss of any single disk on a
given array without incurring application out-
age. Loss of two disks on one array incurs
outage that must be repaired by media recovery.
Note that the resilience of a RAID 5 implemen-
tation degrades as the number of disks per array
increases, and that this resilience degradation
occurs at a higher rate than the acquisition sav-
ings. See RAID 3 outage frequency for details.

 • Outage duration—Good. Duration of partial
outage caused by loss of one disk in an array is

the amount of time required to detect the failure
and replace the drive. Duration of full outage
caused by loss of two or more disks in an array,
a host adapter, bus, or other nonredundant com-
ponent includes the time required to perform
Oracle Server media recovery.

 • Performance degradation during outage—Fair.
There is no degradation for reads from a surviv-
ing drive in array containing a failed drive.
Writes to a surviving drive require a read-
modify-write performance penalty. Reads and
writes to a failed drive incur a high performance
penalty, requiring data from all the surviving
drives in the failed drive’s array. Reconstruction
of a replaced drive dramatically degrades per-
formance to the array by competing with other
I/O requests to the array.

 • Acquisition cost—Fair. Disk capacity cost is
g/(g– 1) times the cost of equivalent RAID 0 ca-
pacity, where g is the number of disks in an
array, plus the additional cost of RAID 5 con-
trollers. RAID 5 acquisition cost is always
greater than the cost of RAID 0 but generally
less than RAID 3 and theoretically less than
RAID 1 for g> 2. In real-life, performance ex-
pectations of RAID 5 implementations
sometimes exceed the configuration’s ability to
deliver. The resulting analyses and equipment
acquisitions sometimes drive the cost of RAID 5
above that of RAID 0+1.

 • Operational cost—Fair. Training is required to
configure striped disk arrays for optimal per-
formance. Capacity growth requires purchase of
entire disk arrays or reconfiguration of existing
arrays.

3.2.7 RAID Summary

Disk technology is improving so quickly that it is
difficult to summarize the performance of several
different implementations of several technologies
without making some sweeping statements that are
bound to be untrue in specific circumstances. If you
live by the golden rule of know your goals, know
your technology, then you will periodically reevalu-
ate your choices. The best way to know your goals
and know your technology is to learn as much as you
can from other people’s experiences and test your
theories thoroughly. As your business risk rises, so
too rises the importance of thorough testing. Figure 2
shows the estimated relative merit of various RAID
configurations specifically for Oracle Server imple-
mentations.

Configuring Oracle for VLDB • 13

Oracle System Performance Group Technical Paper, March 7, 1996

3.3 Stripe Size

Striping will benefit you only if you optimize your
choice of your stripe size. Because different stripe
sizes optimize different operations, the best VLDB
configuration will generally require use of different
stripe sizes on different disk arrays in a system.
Striping yields its most popularly heralded advan-
tages when the stripe size is small. However, using
fine-grained striping for the wrong operations can be
disastrous. In the following sections, we shall ex-
plore how to exploit fine-grained striping while
avoiding its disadvantages.

3.3.1 Fine-Grained Striping

Fine-grained striping configurations interleave data
in small units across a disk array so that all I/O re-
quests, regardless of size, access all of the disks in
the array. The advantage is a very high data transfer
rate for all I/O requests. The disadvantages of fine-
grained striping are [Chen et al. (1993), 151]:

 • Only one logical I/O request can be in service at
any given time on an array. That is, paralleliza-
tion of a single request comes at the expense of
not being able to execute larger numbers of re-
quests in parallel.

 • All disks must waste time positioning for every
request. That is, if the stripe size is smaller than
an I/O request, then two or more drives must
endure the cost of an I/O setup for the request.

We can avoid these disadvantages of fine-grained
striping either by designing our applications and
disk layout around them, or by using larger stripe
sizes if we must. Since we know where the advan-
tages and disadvantages of fine-grained striping are,
we can draw some specific conclusions about Oracle
Server.

3.3.2 High Concurrency Operations

If you are executing a high concurrency application
upon a disk array (i.e., a lot of processes executing
simultaneously will compete for I/O to the array),
then you should ensure that your stripe size is at
least large enough to allow most of your I/O calls to
be serviced by exactly one disk. Otherwise, the num-
ber of physical I/O operations can grow large enough
to put enormous stress on your operating system ker-
nel and your whole I/O subsystem.

You cannot guarantee that Oracle block boundaries
will align with stripe boundaries, so if you match
your stripe size to your I/O call size, you will proba-
bly incur many more physical I/O operations than

RAID Level

None 0 1 0+1 3 5

Control file performance 2 1 2 1 5 3

Redo log file performance 4 1 5 1 2 3

system tablespace performance 2 1 2 1 5 3

Sort segment performance 4 1 5 1 2 3

Rollback segment performance 2 1 2 1 5 5

Indexed read-only data files 2 1 2 1 5 1

Sequential read-only data files 4 1 5 1 2 3

DBWR-intensive data files 1 1 2 1 5 5

Direct load-intensive data files 4 1 5 1 2 3

Data protection 4 5 1 1 2 2

Acquisition and operating costs 1 1 5 5 3 3

 Figure 2. Estimated relative rankings for RAID configurations from 1 (best) to 5 (worst) for specific Oracle
file types. RAID 0+1 is the superior technical configuration option, and it is also the configuration with the
highest cost. Judicious use of RAID 5 arrays allows the disk subsystem architect to reduce system cost at
minimized performance and availability sacrifice. Adapted from [Sun (1995), 28].

14 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

I/O calls. Selecting a stripe size of at least twice your
expected I/O call size will give each I/O at least a
50 percent chance of requiring service from no more
than one disk. In general, using a stripe size of
k times your I/O size will yield a probability of (k –
1)/k that no more than one disk will participate in
servicing an arbitrary I/O. For a given choice of k,
you must ensure that your disk array can sustain
(k + 1)/k times as many I/O calls as your application
generates.

Thus, if access to a disk array is exclusively high-
concurrency indexed or hash-based access to Oracle
data, then a stripe size equal to at least two times the
value of db_block_size will yield excellent perform-
ance. If access to a disk array includes many
sequential scans, then the optimal stripe size will be
at least two times the value of db_file_multiblock_-
read_count for those processes times the value of
db_block_size.7

Fine-grained striping can be a bad choice for the
tablespaces to which Oracle Server writes sort seg-
ments if a lot of applications processes will be

7 In Oracle7.3, the value of db_file_multiblock_read_-
count is configurable at the session level, which will yield
more flexible control over the performance of applications
full-table scan operations.

sorting simultaneously. Fine-grained striping can
also yield surprisingly bad results for applications
that use the Oracle’s parallel query optimization
(PQO) feature, because PQO’s use of multiple query
slaves manufactures its own high concurrency level
even for a single user session.

3.3.3 Low Concurrency Operations

If only a small number of processes compete for I/O
to a striped disk array, then you have more freedom
to use stripe sizes that are smaller than the size of
your logical I/O calls. A low concurrency level al-
lows you to focus on increasing single-process
throughput to a disk array.

An excellent example of a low concurrency, high
volume sequential writer is the Oracle Server redo
log writer (LGWR). LGWR is a single-threaded proc-
esses that does high-volume sequential writes during
OLTP and data-loading activity.8 Placing on-line
redo log files on a dedicated array of fine-grain
striped disks yields excellent performance advan-
tages because the whole array can be devoted to
yielding the highest possible parallelized transfer

8 To be more specific, LGWR only writes redo for data loads
that are performed through the Oracle’s standard SQL
engine. LGWR does not write redo for direct-path data loads
or transactions performed using the unrecoverable option.

Concur-
rency

I/O
Size

Best
Stripe Size

Oracle Server
Application Examples

low small k × db_block_size,
k = 2, 3, 4, …

DBWR

low large k × db_block_size,
k = 0.25, 0.5, 1, 2, 3, …

LGWR, ARCH, single-threaded data
loads and other batch processes, DSS
without parallel query optimization,
single-threaded maintenance
operations

high small k × db_block_size,
k = 2, 3, 4, …

OLTP

high large k × db_block_size×
db_file_multi-

block_read_count
k = 2, 3, 4, …

concurrent reporting, any Oracle
Server parallel operation, other
simultaneously executed high-I/O batch
jobs

 Figure 3. Optimal stripe size as a function of concurrency level and I/O size. Striping granularity on high
concurrency disk arrays should not match I/O call granularity because stripe boundaries do not necessarily
align with I/O request boundaries. The recommended stripe sizes are thus k times the I/O size so that the
system will fulfill each I/O request from a single drive with probability (k – 1)/k.

Configuring Oracle for VLDB • 15

Oracle System Performance Group Technical Paper, March 7, 1996

rate to a single process whose speed is critical to the
application.

Several more opportunities in this category generally
exist in well-designed Oracle Server applications.
Good Oracle Server applications batch their high-
volume insert and update activity whenever possible
into single-threaded, high-speed events. This is a
good design technique that effectively minimizes the
high concurrency phenomenon that makes fine-
grained striping less attractive. A disk array that is
fine-grain striped to maximize high-concurrency
query performance will also maximize batch data
loading or reporting performance if the process can
be designed or scheduled so that it doesn’t compete
for I/O with high concurrency data access.

One final example of a large-I/O operation that can
usually be single-threaded is file maintenance, like a
data file restore process. A critical component of
system availability is how quickly you are able to
perform maintenance operations upon your database
when it goes down. Since restore processes can gen-
erally be designed as sufficiently single-threaded as
you wish to relieve I/O contention during restore.
Happily then, availability and serviceability con-
straints do not generally limit your ability to use
fine-grained striping to maximize normal opera-
tional system performance.

3.3.4 Challenges

The hardest problem with selecting the right stripe
size for a given disk array is that sometimes the us-
age characteristics of the array will not fit entirely
into one category or another. For example, a file that
is commonly accessed via high-concurrency indexed
queries (motivating use of fine-grained striping for
the file) may also be frequently accessed by full-table
scans (motivating course-grained striping). When
you run up against a really stubborn trade-off in this
area of your analysis, your best answer will almost
always be to use one of the following techniques.

 • Job scheduling—For example, don’t run large
data loads at times when the load processes will
maximize contention for I/O services with mis-
sion critical reads and writes.

 • Data placement—Partition your database data
into files that have similar I/O characteristics,
and allow two files to reside on the same disk
array only if those files have similar I/O charac-
teristics. For example, it would be a horrible
idea to use very fine-grained striping for on-line
redo log files if you were to place other files on

the array whose processes would compete with
LGWR for I/O.

 • Application design—Design single-threaded
(i.e., batched), high speed, direct path data
loading into your application whenever possible
instead of using resource intensive transactions
executed at high-concurrency. Bad transaction
design not only makes it difficult to construct a
good disk configuration, it also heats up Oracle
Server latches and locks, transaction tables,
causing a whole cascade of hard problems.

 • SQL optimization—Sort to disk as infrequently
as possible, and use full-table scan access paths
as infrequently as possible. Eliminating one un-
necessary sort or full-table scan from a
frequently executed SQL statement can some-
times make a remarkable difference in the entire
application.

Fortunately, most trade-offs can be managed quite
nicely with the right mixture of (1) investment into
good hardware and software, and (2) willingness to
optimize the application design and use to help that
hardware and software do their best work.

3.3.5 Summary

There is no single “best stripe size” for all applica-
tions, or even for all operations within a single well-
defined application. You should expect to use differ-
ent stripe sizes for different disk arrays in a good
VLDB I/O subsystem configuration. In general, you
should use the smallest stripe size that you can to
eliminate disk hot spots, but you must not make your
stripe sizes so small that you cause I/O thrashing on
at high concurrency levels. You should use the fol-
lowing guidelines for choosing the stripe size for a
disk array:

 • High concurrency—If there will be high-
concurrency I/O to the array, then use a stripe
size that at least two times as large as the small-
est of your I/O calls. For high-concurrency
Oracle Server data files, this means that you
should never use a stripe size smaller than
2 × db_block_size. If these files incur frequent
sequential reads, then you should ensure that
your stripe size is at least 2× db_file_-
multiblock_read_count × db_block_size.

 • Low concurrency—If your concurrency level is
low for a particular disk array, then you may
wish to use a stripe size that is smaller than the
size of your I/Os to maximize throughput to the

16 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

array for a small number of concurrent proc-
esses. Very fine-grained striping is good, for
example, for on-line redo log files.

A simple empirical method for selecting the best
stripe size for a given operation is:

 1. Determine the types of I/O operations that will
take place to the disk array under consideration.
The most common mistake in selecting a stripe
size is the failure to consider one or more key
operations that will take place upon the disk ar-
ray.

 2. Create several arrays with different stripe sizes
that will allow you to test the different stripe
sizes on your particular hardware with your
particular application.

 3. Perform identical operations on each array.
Write-intensive tests that are easy to set up in-
clude tablespace creations, direct path data
loads, and index creations. Read-intensive tests
that are easy to set up include full-table scans
and indexed scans.

 4. Measure the performance of the tests, and
choose the configuration that yields the best re-
sults. Key statistics include elapsed time,
number of physical read and write calls, and for
RAID 5 the number of checksum reads.

Reasonable stripe sizes for Oracle Server configura-
tions generally range from 16–32KB for fine-grained
disk arrays, to 2–4 times your system’s maximum
I/O size for coarse-grained disk arrays. The maxi-
mum Oracle Server I/O size today is 64KB on most
ports and 128KB on a few ports,9 so good coarse-
grained stripe sizes for Oracle configurations gen-
erally range from 128KB to 512KB.

3.4 Array Size

Data striping yields excellent long-term uniformity
of I/O across disks, which motivates us to use large
disk arrays. However, the larger a disk array, the
higher the outage frequency for that array becomes.
Let’s consider these two issues one at a time to build
a method for choosing optimal disk array sizes.

3.4.1 Throughput

Disk striping, used correctly, is a superb tool for in-
creasing disk throughput. Striping provides
transparent parallelization of I/O calls across lots of

9 The maximum I/O size that UNIX will support is be-
tween 64KB and 512KB on most ports.

relatively inexpensive disk drives. This paralleliza-
tion serves large numbers of small I/O requests
simultaneously, and it yields transfer rates for large
I/Os that are many times higher than the rate of your
fastest disk drive [Chen et al. (1993), 151].

You can calculate the minimum RAID array size
required to sustain a given throughput level with the
following simple technique.

 1. Specify the maximum sustainable throughput
capacity of each of your disk drives. This capac-
ity figure should be the maximum sustainable
I/O rate per disk drive.10 Call this capacity c,
expressed in I/Os per second.

 2. Estimate the total number t of I/O calls that you
concurrent transaction load will generate.

 3. Compute the total number r of striped physical
I/O operations per second that you will require
of your disk array, using

 r
k

k
t=

+1
,

 where k is your stripe size divided by your I/O
size (described above in our stripe size discus-
sion). For example, if your application will
generate t = 300 I/O calls per second against the
array, and your array’s stripe size is two times
your I/O size, then your disk array must sustain
450 physical I/O operations per second.

 4. Compute the minimum number of disks g= r/c
that must be in a disk array that is capable of
sustaining this required I/O load:

 g
r

c

k

kc
t= = +1
.

 5. Note that the transactional throughput rate re-
quirement t (computed in step 2) may depend on
the size of your disk array g (computed in
step 4). For example, halving the size of your
disk array may nearly halve the number of
transactions that will be executed upon that ar-
ray. Your disk array vendor can tell you the
maximum recommended size of your brand of
striped disk array.

This is a straightforward technique for computing
array sizes for RAID 0 and RAID 0+1 arrays. If you

10 This sustainable I/O rate figure is computed by your
disk drive vendor as the highest rate that the disk drive
can sustain without driving disk utilization above 60–70%.
Limiting device utilization this way keeps I/O wait times
within predictable boundaries.

Configuring Oracle for VLDB • 17

Oracle System Performance Group Technical Paper, March 7, 1996

use this technique to compute RAID 5 array sizes,
you must increase your I/Os-per-transaction estimate
for RAID 5 to reflect the high overhead cost of each
write call. The influence of a disk cache, which re-
duces the cost of this write call overhead, makes the
computation a little less straightforward.

3.4.2 Availability

Computing the right disk array size for a RAID 3 or
RAID 5 configuration is a little more complicated
than just computing the number of drives needed to
sustain your required throughput. The additional
complication is caused by the degraded performance
of RAID 3 and RAID 5 configurations during out-
age.

Recall that RAID 3 and RAID 5 provide protection
against data loss at a presumably significant acquisi-
tion cost advantage relative to RAID 1. However,
what the implementers of RAID 3 or RAID 5 sacri-
fice in return for this cost savings is significantly
increased vulnerability to performance degradation
during outage. We have also seen that one way to
reduce the cost of a RAID 3 or RAID 5 configuration
is to increase the size of the disk array, but that this
savings comes at the cost of higher outage frequency.
Consequently, assessing your aversion to perform-
ance penalties induced by partial disk subsystem
outage is an important step in calculating your best
RAID 3 or RAID 5 array size.

RAID 1 and RAID 0+1 inflict no performance pen-
alty during outage of a disk protected by an
operating mirror disk. The computation procedure
for optimal RAID 1 and RAID 0+1 array sizes is
thus unencumbered by similar considerations.

3.4.3 Summary

There is no single “best disk array size” for all appli-
cations. Larger array sizes yield better throughput
performance at the cost of higher outage frequency
for the array. Just as a well-designed system may
contain different RAID configurations on different
arrays, a well-designed system may contain different
array sizes for different disk arrays, depending upon
the specific characteristics of the data being stored in
each array.

For RAID 1 and RAID 0+1 configurations, larger
array sizes improve performance without reduction
in fault resilience. For RAID 3 and RAID 5 configu-
rations, larger array sizes improve performance but
penalize fault resilience.

3.5 Raw Devices

Raw devices are an important tool that the VLDB
architect uses to reduce CPU load for write-intensive
applications. A raw device is an unformatted UNIX
disk slice that Oracle Server can open as a data file
or an on-line redo log file without using the standard
UNIX buffered I/O services. Oracle Server’s ability
to bypass the overhead of UNIX buffering reduces
the operating system code path for write operations.
Raw devices are thus advised for well-designed
VLDBs with high transactional throughput require-
ments.

Raw devices are generally required today if you in-
tend to use Oracle Parallel Server for UNIX. Most
UNIX implementations do not yet allow two cluster
nodes to access mounted file systems simultaneously.

Raw devices incur operational costs beyond those of
administering UNIX file systems (ufs) [Millsap
(1995b), 56–58]. But for write-intensive VLDB,
these costs pale in comparison to the combined costs
of unnecessary CPU overhead and the already sig-
nificant costs of administering a system with
hundreds or thousands of disk drives.

 • Random read performance—Marginal to negli-
gible improvement compared to ufs.

 • Random write performance—Excellent im-
provement compared to ufs because of code path
reduction. Raw devices also permit implementa-
tion of asynchronous I/O if the platform offers it.

 • Sequential read performance—Marginal per-
formance degradation compared to ufs. Using
raw devices can dramatically degrade the per-
formance of poorly optimized SQL applications
compared to ufs implementations because UNIX
buffer caching outperforms Oracle Server cach-
ing for full-table scans.

 • Sequential write performance—Excellent im-
provement compared to ufs because of code path
reduction and async I/O capability.

 • Outage frequency—Increased risk due to the
more sophisticated administration talent re-
quired to administer raw devices.

 • Outage duration—Increased risk due to the
more sophisticated administration talent re-
quired.

 • Performance degradation during outage—
Difference from ufs is isolated to the normal op-

18 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

erational performance characteristics described
above.

 • Acquisition cost—Same as ufs.

 • Operational cost—Worse than ufs. There are
large training and salary costs associated staff
competent to configure and maintain raw disk.
Raw device configurations also require purchase
or development of custom software tools to help
manage the I/O subsystem. Differential costs of
administering raw versus ufs are negligible as a
proportion of total I/O management spending in
a VLDB environment with thousands of disks.
No incremental cost of using raw devices for on-
line redo log files because these files are backed
up the same as ufs by the Oracle ARCH process.

3.5.1 Techniques

The VLDB architect should employ the following
techniques in implementing raw devices:

 • Standard redo log file sizes—Configure raw
slices that will be used for on-line redo log files
to be all the same size.

 • Standard data files sizes—Use one slice size for
all raw slices to permit you to move the contents
of a raw slice from one disk to another if you
need. Standard raw slice sizes are also an impor-
tant component of a good Oracle storage
parameter management plan. If your database
contains one or more small tablespaces for
which large raw slices would be wasteful, you
may wish to select one or two more standard raw
slice sizes for those tablespaces. If you use more
than one raw slice size, then make the sizes in-
tegral multiples and divisors of each other.

 • Keep some slices unallocated—Leave some raw
slices unallocated so that you will have spare
disk capacity to handle database growth. Oracle
Server gives you the capability to alter ta-
blespace … add datafile and alter database
add logfile, but you can’t use either if you don’t
have spare slices in the right sizes that are
available to allocate.

3.6 Oracle Configurations

There is no such thing as a single optimal Oracle
configuration for all VLDB applications. Your opti-
mal mixture of fast, reliable, and inexpensive
depends upon your specific goals. However, we can
make some general conclusions about how you
would optimize your Oracle Server VLDB configu-

ration if you were unencumbered by economic
constraints:

Control files
n-way multiplexed RAID 0+1
stored on independent I/O subsystems

On-line redo log files
all files the same size
raw
n-way multiplexed RAID 0+1
fine-grain striped
stored on dedicated disks

Archived redo log files
ufs (because you have to)
n-way multiplexed RAID 0+1
fine-grain striped
stored on dedicated disks
separated from on-line redo log files

Data files
all files one of 1–3 standard sizes
raw if

file is write-intensive
instance is OPS

ufs if
segment is full-table scanned

n-way multiplexed RAID 0+1
stripe size at least 2× I/O size if

I/O concurrency to the array is high
stripe size less than 2× I/O size only if

I/O concurrency to the array is low
RAID 5 for an array only if

I/O is not write-intensive

Other files
ufs
n-way multiplexed RAID 1 if possible
striped if I/O character indicates
named, distributed per OFA Standard

If you are cost-constrained, then you must evaluate
your less expensive options for the configuration that
yields the most value to you per unit of investment.

3.6.1 Example Configurations

You can mix and match technologies in a large
number of ways. Three sample Oracle Server con-
figurations are defined in Figure 4. Each represents a
different level of investment required to meet the
specific goals of a specific implementation.

 • Configuration A—Multiplexed (n= 2, 3)
RAID 0+1 for all files, raw devices everywhere
possible. Mission critical, OPS-ready, very high

Configuring Oracle for VLDB • 19

Oracle System Performance Group Technical Paper, March 7, 1996

transaction rate, very high query rate, opera-
tionally complex, high cost.

 • Configuration B—Raw RAID 0+1 for write-
intensive files, ufs RAID 5 and ufs for infre-
quently updated files. Moderately high
availability, non-OPS, moderate transaction
rate, very high query rate, moderate operational
complexity, moderate cost.

 • Configuration C—Raw RAID 0+1 for write-
intensive files, ufs RAID 0 for all other Oracle
files. Mission non-critical, non-OPS, moderate
transaction rate, very high query rate, reduced
operational complexity, reduced cost.

4. Redo Log Files
Oracle Server uses a dedicated process called the
redo log writer (LGWR) to write batches of small
transaction entries to disk. The actions of LGWR al-
low Oracle Server to write committed blocks to disk
asynchronously with respect to user commit requests
and still maintain data integrity even if the server
fails at an awkward moment. Dedication of a back-
ground process to serialize and batch writes of
change vectors to disk is an enormous performance
advantage of the Oracle Server Architecture.

LGWR performance is critical to the performance of
OLTP systems and data loading procedures that do
not use Oracle Server unrecoverable transaction
features. Environments that do not write intensively
through the standard SQL engine to the database do
not stress LGWR. Especially in high-volume OLTP
systems, badly configured redo logging will degrade

either performance or outage duration or both;
hence, configuring redo logs is the focus of this sec-
tion.

4.1 Performance/Availability Trade-Offs

The battle between performance and reliability meets
full strength at the redo log file. To optimize per-
formance, you will configure your LGWR and DBWR

to write as infrequently as possible. However, to
minimize the roll-forward time associated with in-
stance recovery, you will configure your LGWR and
DBWR to write as frequently as possible without
treading on your performance requirements. The
challenge is thus to know your technology well
enough to find a value of log_checkpoint_interval
that is simultaneously large enough and small
enough to meet both requirements.

Understanding your technology relative to redo re-
quires understanding of two key events: Oracle
Server checkpoints, and Oracle Server instance re-
covery.

4.1.1 Oracle Server Checkpoints

An Oracle Server checkpoint is an event begun when
LGWR signals DBWR to write all the modified blocks
in the database buffer cache, including committed
and uncommitted data, to the data files [Concepts
(1992), 23.9–12]. Checkpoints induce a brief load
spike on the system, the effects of which the database
administrator tries to minimize through tuning
[Admin (1992), 24.6–7]. Normal operational check-
points occur at the following times:

Configuration

File Type A B C

On-line redo log files raw 0+1 raw 0+1 raw 0+1

system, temp, rbs raw 0+1 raw 0+1 ufs 0

Other data files raw 0+1 ufs 5 ufs 0

Archived redo log files ufs 0+1 ufs 0+1 ufs 0+1

Control files ufs 0+1 ufs 0+1 ufs 0+1

Other files ufs 0+1 ufs 5 ufs 0

Figure 4. Sample disk configurations for Oracle Server applications. This table describes three sample
configurations using mixtures of raw and ufs disk and different RAID levels to achieve different business
goals. The goals and benefits of configurations A, B, and C are described in the text.

20 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

 • Log switch—When LGWR fills a redo log file
and attempts to switch to the next one in the cir-
cular queue, LGWR issues a checkpoint.

 • Predefined interval—LGWR will issue a check-
point whenever log_checkpoint_interval
operating system blocks have been written to
disk since the most recent checkpoint. LGWR

will also issue a checkpoint whenever log_-
checkpoint_timeout seconds have passed since
previous checkpoint began.

Redo log file size and the values of log_check-
point_interval and log_checkpoint_timeout are the
most important influencers of performance degrada-
tion from normal operational checkpoints. Many
database administrators deactivate the time-out by
setting it to zero, and they control checkpoint fre-
quency with the log_checkpoint_interval
parameter. Some DBAs simply disable the timeout
and use such a large checkpoint interval that no
checkpoints occur other than those motivated by log
switches.

4.1.2 Oracle Server Instance Recovery

The amount of time required for Oracle Server in-
stance recovery is important to the VLDB architect
because it defines the application outage duration for
the following events:

 • Unclustered server node failure—Failure of a
CPU, bus, or memory board in a non-clustered
Oracle Server configuration causes application
outage.

 • Oracle Parallel Server node failure—Failure of
one or more Oracle Parallel Server nodes will
cause a brief cluster-wide outage that ends when
a surviving node completes instance recovery on
the failed node’s redo thread.

The Oracle7.3 implementation of on-demand de-
ferred roll-back makes the cluster unavailability
period dependent predominantly on the time needed
to reconstruct the database buffer cache from the
failed node’s redo thread. The timeline for Oracle7.3
failover compared to Oracle7.2 failover is shown in
Figure 5.

Oracle Server instance recovery is a tunable process
whose time consumption depends predominantly on
two factors [Maulik and Patkar (1995)]:

 • The amount of redo that has been generated
since the most recent checkpoint (less is better);
and

 • The cache hit ratio on the database buffer cache
during recovery (higher is better).

The key influencers over the first factor are the sys-
tem’s redo generation rate and the checkpoint
frequency. Reducing total redo generation is an ap-

t0 - Node A fails
t1 - Node B detects node A outage
t2 - Node B completes cluster reorganization and invalid PCM lock identification
t3 - Node B completes roll-forward recovery through node A redo thread
t4 - Node B completes PCM lock validation
t5 - Node B completes transaction rollback

node B unavailability

node B unavailability

Oracle 7.3
t0t1 t2 t4t3

Oracle 7.2
t1 t2t0 t4 t5t3

Figure 5. Failover timelines for Oracle Parallel Server releases 7.2 and 7.3. OPS 7.3 defers rollback appli-
cation to minimize the duration of cluster unavailability during node failover, yielding better node recovery
performance than OPS 7.2 and prior versions. In OPS 7.3, the time at which instance-wide rollback is
complete does not matter to an individual application since all 7.3 rollback is executed on an as-needed,
transaction-by-transaction basis.

Configuring Oracle for VLDB • 21

Oracle System Performance Group Technical Paper, March 7, 1996

plication design task of minimizing the weights of
your transactions, minimizing the number of trans-
actions your system must execute to meet your
business goals, and exploiting Oracle Server’s unre-
coverable transaction features wherever possible.
Reducing the checkpoint frequency is a simple mat-
ter of adjusting the checkpoint interval or perhaps
increasing redo log file size.

You can improve the second factor by increasing the
size of the database buffer cache and by reducing the
likelihood of cache misses during the recovery proc-
ess. Increasing the setting of db_block_buffers for
the recovery process (at the expense of reducing
shared_pool_size if you must) generally reduces
database buffer page faulting. During instance re-
covery that does not require media recovery, you
have no other control over the recovery process
cache hit ratio because your roll-forward must exe-
cute given the state of the system at the most recent
checkpoint before the outage.11

Settings of log_checkpoint_interval that yield gen-
erally good trade-off performance in OLTP
environments range from a few kilobytes to a few
hundred megabytes (specified in operating system
blocks). Roll-forward recovery rates seem to vary
almost as dramatically as roll-forward recovery rate
requirements.12 For environments with very stringent
performance and reliability requirements, small
changes to log_checkpoint_interval can make big
differences in instance recovery time. Consequently,
finding the optimal setting of log_checkpoint_inter-
val frequently requires specific testing for the envi-
ronment being used.

4.2 Redo Log File Placement

A good VLDB configuration must isolate the high-
I/O redo log files as much as possible from all other
high-I/O files. You maximize your chances of pre-
venting log file I/O bottlenecks if you isolate your
redo log files on disks and controllers dedicated to
serving only redo log files. This isolation technique

11 Maulik and Patkar’s results are important for Oracle
Server media recovery from multiple data file corruptions,
such as results from user input error. They recommend
executing multiple restore file-recover instance cycles if
recovery from several data files is required, and if the
database buffer cache hit ratio during each recovery pass
can be improved by doing so [Maulik and Patkar (1995),
7.25].
12 Oracle database administrators have reported wide-
ranging roll-forward rates. Recently, I’ve heard reports as
low as 50KB/sec and as high as 1,750KB/sec.

meshes well with our desire to have redo log files on
a fine-grain striped disk array that is accessed by a
single-threaded (very low concurrency level) process.

In addition to separating log files from everything
else, you in fact must separate log files from each
other. While LGWR is writing to an on-line log file as
fast as it can, ARCH is reading an on-line log file as
fast as it can (at a given moment, it could be reading
any one of the on-line log files except for the one
currently held open by LGWR), and ARCH is simulta-
neously writing as fast as it can to one of the
archived redo log files. Fine-grained redo log file
striping can minimize the contention between LGWR

and ARCH.

Oracle Server allows you to archive redo log files
directly to tape if you want to. There are several rea-
sons that VLDB database administrators almost
always archive first to disk and then copy the archive
files to tape with n-way multiplexed writes.

 • Better reliability—Tapes are one or more orders
of magnitude less reliable than disks. Entrusting
one’s only surviving copy of a potentially mis-
sion-critical archived redo log file to a tape is
not very smart.

 • Better throughput—If you have ever run truss
on ARCH, you know that ARCH is not simply a
streamed copy process, but that the operation
performs best on a device capable of random
I/O. Archiving to disk is much faster than ar-
chiving to tape, which reduces the likelihood
that ARCH will become an unnecessary bottle-
neck.

 • Better error control—You can much more re-
liably manage disks that fill than tapes that fill.
Space management can be software automated
for disks, but the process requires manual inter-
vention for tapes.

 • Faster restore times—Many database adminis-
trators keep on disk as many archived redo log
files as would be required to recover the ta-
blespace with the oldest current hot backup.
This technique reduces restore process duration
by the amount of time required to find the right
tape, mount it, and read the archived redo log
files from the tape to disk.

4.3 Redo Log File Size

A system’s optimal redo log file size depends on
redo generation rate and its instance recovery outage
duration requirement. A sound method for calculat-

22 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

ing the right log checkpoint interval and log file size
for your system is:

 1. Specify your crash recovery time requirement.
Call this time t, expressed in seconds.

 2. Compute the rate at which your system applies
redo in the instance recovery process. Call this
rate r, expressed in bytes per second.

 3. Set the value of log_checkpoint_interval to
rt/b, where b is your operating system block size
in bytes.

 4. Create your redo log files with size f = krt, for
some k = 1, 2, 3, … (i.e., f is an integral multi-
ple of rt).

 5. If checkpoints begin to accumulate without
completing, then you must increase the value of
log_checkpoint_interval . You can determine
whether you are checkpointing too frequently by
comparing background checkpoints started with
background checkpoints completed in v$sysstat.
If the values differ by more than one, then your
checkpoints are not completing before newer
checkpoints are started.

 6. Choose a log_buffer size of b= 3ns, where n is
the number of disks in the disk array holding the
on-line redo log files, and s is the disk array’s
stripe size. The largest write that LGWR will exe-
cute is b/3 =ns, which occurs when the redo log
buffer becomes 1/3 full. Using b= 3ns then
means that LGWR will never write more than one
stripe per disk in the disk array holding on-line
log files.

This method reduces the task of choosing your opti-
mal redo log file size to the task of choosing the
appropriate integral multiple k of your checkpoint
interval size. Factors that should influence you to use
larger values of k include:

 • reduced redo log switch frequency

 • simplified redo log file placement decisions

 • reduced media recovery complexity because
there are fewer files to handle

 • reduced frequency of checkpoint busy waits and
archiver busy waits

Factors that should influence you to use smaller val-
ues of k include:

 • reduced outage cost associated with losing all
copies of your active on-line redo log file13

 • improved flexibility for preventing file system
full errors on the archive destination device

 • reduced disaster-time data loss in standby data-
base configurations

A general rule of thumb in sizing redo log files is
that you should attempt to log switch no more fre-
quently than about twice an hour.

4.4 Redo Log File Quantity

The number of on-line redo log files you create helps
determine whether checkpointing and archiving will
cause transaction processing bottlenecks. Selecting
the right number of redo log files helps to reduce:

 • Checkpoint busy waits—A checkpoint busy wait
occurs when LGWR attempts to log switch into a
log file before the checkpoint associated with the
switch out of that file has had a chance to com-
plete.

 • Archiver busy waits—An archiver busy wait
occurs when LGWR attempts to log switch into a
log file whose contents have not been success-
fully copied to an archived redo log file by
ARCH.

Checkpoint busy waits were frequent occurrences in
the days when most Oracle Server implementations
used the default installer configuration of only two
on-line redo log files. You can use the following
process to detect and fix checkpoint busy waits:

 1. Check v$session_wait for log file switch
(checkpoint incomplete) events. If you have
log_checkpoints_to_alert set to true, then you
can also search for the string “cannot allocate”
in the alert.log file.

 2. You can reduce checkpoint busy waits by

 • increasing the number of on-line redo log
files to reduce the probability that LGWR

will wrap through the circular queue of redo
log files before a checkpoint has time to
complete; or

13 You should try to protect yourself from this catastrophic
event by using n-way multiplexed hardware for storing on-
line redo log files. If you can’t afford a multiplexed hard-
ware solution, Oracle7 allows you to mirror in software by
using multiple redo log file members in a log file group.

Configuring Oracle for VLDB • 23

Oracle System Performance Group Technical Paper, March 7, 1996

 • adding DBWR processes to increase the
speed of checkpoints (only if you’re using
synchronous writes); or

 • increasing the value of db_block_check-
point_batch to increase the speed of check-
points; or

 • reducing the value of db_block_buffers to
reduce the size of a checkpoint; or

 • reducing the size and number of rollback
segments in the database (described in a
later section).

Archiver busy waits typically occur during high-
volume transaction bursts in batch processing, when
the writing of redo by LGWR outpaces ARCH’s ability
to keep up. This causes log switch waits to be gated
on the ARCH process—ARCH becomes the bottleneck
for all commit processing in the system.

Techniques for alleviating this problem include:

 • Fine-grained striping—Place your archived redo
log files on a disk array that uses fine-grained
striping to maximize ARCH throughput to the
files.

 • More on-line redo log files—Create enough on-
line redo log files that LGWR can’t wrap around
to catch ARCH from behind before the burst is

finished. Think of a foot-race on an oval track.
One way to prevent slow runners from being
passed (i.e., “lapped”) by faster runners is to
make the track so large that the race ends before
the first-place finisher has a chance to pass the
last-place finisher.

 • Multiple archivers—Use multiple ARCH proc-
esses with Oracle Server’s alter system archive
log all to … syntax. Oracle Services consultants
have prepared an assortment of UNIX tools to
automate this process.

5. Standby Database Configurations
A standby database configuration is a tool that the
VLDB architect uses to achieve resilience to outage
events including the following:

 • Site disaster—Site disaster is an event in which
the primary production system is destroyed by
some catastrophic event. Earthquake, fire, flood,
tornado, locusts, plane crash, and vandalism all
qualify. Maintaining high availability through a
disaster requires redundant database hardware,
software, people, and procedures operating at a
site physically isolated from the primary data-
base.

A B C

ARCH

LGWR

(a)

A B C

ARCH

LGWR

(b)

A B C

ARCH

LGWR

(c)

A B C

ARCH

LGWR

(f)

A B C

ARCH

LGWR

(e)

A B C

ARCH

LGWR

(d)

Figure 6. An archiver busy wait. This figure shows how a fast LGWR process can overtake a slower ARCH

process to cause a performance bottleneck. Panel (a) represents the instance immediately after startup, with
LGWR writing to file A and ARCH not yet active. In (b), LGWR has switched to file B, allowing ARCH to open A
for reading. In (c), LGWR has switched to file C, but ARCH has not yet completed its reading of A. In (d),
ARCH has switched to reading B, but in (e), LGWR has switched into A. In (d), lgwr attempts to switch to
file B, but it cannot because the file is currently being archived. At this point, ARCH will prevent the com-
pletion of any commit requests until it switches into file C. If the redo generating process that is keeping
LGWR so busy lasts much longer, then ARCH will persist in blocking transaction processing on the system.

24 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

 • Transaction error—Application and user errors,
which logically corrupt physically healthy data,
can produce very difficult data recovery chal-
lenges. In many cases, the best way to recover
from a transaction error is to execute a reversing
transaction. For cases in which this method is
expensive or impossible, the Oracle architect
can design a standby database recovered to a
desired point in history, from which a data ad-
ministrator can extract desired rows for
insertion into the production database.

5.1 Disaster Recovery

In a standby database configuration designed for
disaster recovery, all transactions executed upon the
primary system are duplicated on a remote host
called the standby system. If a disaster renders the
primary system unusable, then the application users
can be switched over to the standby system.

Oracle7.3 supports standby configurations, and they
can be implemented with UNIX software in versions
prior to 7.3. Oracle Services sells a service and tool
package called Oracle DRS that manages Oracle
Server hot standby configurations. Jeff Seely de-
scribes this package in a detailed technical report on
Oracle DRS [Seely (1995)].

To use DRS, you must create a standby system that is
an exact duplicate of your primary system. That is,
the hardware, operating system, disk drive array, file
structure, database software, schemas, and data must
be configured on the standby system exactly as they
are configured on the primary system. This duplicate
setup is a good investment only if its cost is less than
the cost of disaster-induced outage multiplied by the
probability that a disaster will occur within the life of
your system.

DRS copies archived redo log files from the primary
system to the standby system and keeps the standby
database in continual media recovery mode. The
standby system applies redo generated by the pri-
mary system. This keeps the standby roughly
synchronized with its master. By ensuring that all
the archived redo log files produced on the primary
system are applied to the standby system, DRS en-
sures that the standby database is consistent and that
transaction level integrity is not compromised.

The amount of data loss incurred at disaster time
will be the amount of redo that the primary system
has not yet copied to the standby system, including
the unarchived on-line redo log file that was active at
the time of the crash, plus any archived redo log files

that were not copied successfully to the standby site
before the crash. Hence, DRS sites use small redo log
files to minimize potential data loss.

5.2 Transaction Error Recovery

With Oracle7, access to an historical incarnation of a
row requires access to an historical incarnation of
the row’s database. To the degree that a disaster re-
covery system succeeds in tightly synchronizing a
standby system with its primary system, it fails to
provide access to historical images of the primary
database. A triple-mirrored disk configuration is
useful to provide access to historical database im-
ages. The method works like this:

 1. The first and second mirror pieces are left in
continual synchronization to act as a standard
duplexed mirror configuration for the primary
database.

 2. When the third mirror architecture is config-
ured, the third mirror is “silvered”—that is,
synchronized with the first and second mirror
pieces. This operation is performed either with
the primary database closed or with its ta-
blespaces in hot backup mode. Thus, at this
point, the third mirror constitutes either a full
cold backup or a full hot backup of the primary
database.

 3. You can instruct an Oracle Server instance to
open the database files on the third mirror piece
and recover them to a specified point in history,
using the primary database’s archived redo log
files. The database on the third mirror is now
the standby database. It is a completely consis-
tent image of the primary database at a specified
point in history.

 4. You now have complete access to every row in
an historical incarnation of the primary data-
base. If you need to undo the effects of
committed but erroneous transactions executed
in the primary database, then you can copy his-
torical rows from the standby database. Using
this method to restore any subset of database
data requires that you know your application
and your data very well so you do not introduce
referential integrity violations.

 5. To minimize standby database media recovery
time and simultaneously provide good recovery
flexibility, you can execute each “step forward in
time” recovery process to a time immediately
preceding a transaction that you are particularly
likely to want to reverse.

Configuring Oracle for VLDB • 25

Oracle System Performance Group Technical Paper, March 7, 1996

 6. If you roll your standby database so far forward
in time that you no longer have access to the
historical period you need, then you can recover
the third mirror from tape and begin again with
step 3.

6. Tablespace Partitioning
When you convert your logical data model into a
physical data model, you are required to make long-
term decisions about how you will partition your
database segments into tablespaces. Constraints that
determine how you should partition your segments
into tablespaces include the following:

 • I/O performance—Each tablespace should con-
tain segments whose I/O concurrency and I/O
size characteristics are similar, to facilitate disk
array size and stripe size selection. Grouping
read-only segments into read-only tablespaces
reduces backup and recovery data transfer vol-
umes and reduces PCM lock maintenance.
Separating frequently written segments from
infrequently written segments yields flexibility
in hot backup procedure construction.

 • Outage resilience—Small tablespaces allow off-
line tablespace maintenance with minimal ap-
plication outage. The system tablespace cannot
be taken off-line, and it cannot be dropped and
recreated, so keeping as few segments there as
possible minimizes the need for database down-
time. Isolating rollback segments into as few
tablespaces as possible reduces outage fre-
quency, because any tablespace containing an
on-line rollback segment cannot be taken off-
line. Storing referentially related segments in
small groups of tablespaces maximizes your
ability to exploit the tablespace point-in-time re-
covery feature scheduled for Oracle8.

 • Space management—Isolating segments with
short lifespans minimizes the impact of ta-
blespace free space fragmentation that can block
Oracle Server extent allocation. VLDB adminis-
trators profit from using tablespace default
storage parameters instead of maintaining seg-
ment sizing parameters at the segment level.

 • Quota management—Oracle Server space quo-
tas are administered to users by tablespace.
Hence, you should assign groups of segments in
one schema to a small group of tablespaces.

6.1 Assigning Segments to Tablespaces

The following method will help you make good de-
cisions about how to partition your Oracle segments
into tablespaces.

 1. Put only dictionary segments (segments owned
by sys) in the system tablespace. Drop the aud$
table and create it in a tablespace other than sys-
tem so that you can administer to this table’s
growth and shrinkage without fragmenting the
system tablespace. Some experts recommend
editing sql.bsq (only lines below the // token in
the file) to modify the location and storage pa-
rameters for the dictionary tables containing
stored procedures and triggers. Secure the full
cooperation of your Oracle Worldwide Support
representative before you attempt to edit sql.bsq.

 2. Create two or more tablespaces devoted exclu-
sively to temporary segments. Create a program
that will allow you to switch your users’ tempo-
rary tablespace settings quickly to the names of
on-line tablespaces other than system in the
event of temporary tablespace media outage [To
(1995), 6.12].

 3. Create one or more tablespaces devoted exclu-
sively to rollback segments. Do not place a
rollback segment in any tablespace other than
one designed exclusively for rollback segments.

 4. Isolate transient application segments with short
lifespans in as few tablespaces as possible. Do
not place a transient application table or index
in any tablespace other than one designed ex-
clusively for transient segments.

 5. Exploit every opportunity to isolate read-only
segments into tablespaces that contain read-only
segments exclusively. Then operate these ta-
blespaces in read-only mode.

 6. Categorize your remaining segments by size.
Store only similar-sized segments in a ta-
blespace.

 7. Limit the maximum size of a tablespace to about
10GB. Small tablespaces incurring file outage
can be taken off-line with potentially limited
impact to database availability. Large ta-
blespaces are much more likely to cause
database application outage for a file outage
event. Using small tablespaces will enable paral-
lelization when tablespace point-in-time
recovery becomes available in a future release of
Oracle8.

26 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

 8. If you are using fine-grained striping for data
files, then it is not necessary to separate indexes
from data to distribute I/O load across disks.
However, if your operational procedures include
periodic index rebuilds, you may want to con-
sider isolating indexes into their own
tablespaces to minimize the possible impact of
tablespace free space fragmentation caused by
the drop index.

7. Storage Parameters
Storage parameters have long been a hot topic be-
cause many Oracle DBAs believed that it was
important to try to make each of their database seg-
ments use no more than one extent. More and more
people have learned that multiple extents bear neg-
ligible performance impact upon all Oracle DML
operations. The time spent “compressing” tables and
indexes into one extent was generally time that could
have been spent elsewhere for greater gain.14

7.1 Maxextents

The real reason that DBAs must pay attention to
storage parameters is that the maximum allowed
value of maxextents is limited in pre-7.3 releases by
the value of db_block_size. The threat that an appli-
cation could fail with a max # extents reached error
focused database administrators’ attention on fitting
their segments into a limited number of extents.
With the maxextents unlimited capability of Oracle
Server Release 7.3, this maxextents threat goes
away.

Ironically, with VLDB, storage parameters are im-
portant for precisely the opposite of the original
historical reason. With VLDB, there are several
cases in which you want your segments to be stored
in more than one extent.

 • Using multiple extents allows reclamation of
tablespace free space with the truncate … drop
storage command.

 • You want rollback segments to have multiple
extents to minimize system load generated by
dynamic extent allocation and deallocation
[Millsap (1995c)].

14 As people learn this, they discover that if they can get
better DML performance from “compressing” the segment,
they could have gotten the same improvement by better
managing the multi-extent segment [Millsap (1995c)].

 • You want the ability to purchase disk hardware
as your system grows, and Oracle’s ability to
grow segments dynamically as required suits
this goal.

 • Proper use of multiple extents helps reduce false
pinging in Oracle Parallel Server implementa-
tions.

 • You want tablespace pre-fragmentation in any
tablespace containing temporary segments or
rollback segments, to minimize extent allocation
overhead.

7.2 Storage Parameter Attributes

Good Oracle Server VLDB storage parameters have
the following attributes:

 • Database block size multiples—All extent sizes
are integral multiples of the database block size.
Oracle will always round extent sizes to whole
blocks, so you might as well ask for the size
you’re going to get. For example, 10K is a silly
value for initial in a database with 8KB Oracle
blocks. Initial extents in an 8KB-block database
will be allocated at least 16KB of space, regard-
less of what you ask for.

 • File size divisors—All extent sizes should be
integral divisors of your usable data file size.
This enables you to fit extents nicely into data
files with no space waste.

 • Small number of extent sizes—The number of
distinct extent sizes in a given tablespace should
be small; for example, only one. If there is more
than one extent size in a tablespace, then all
those extent sizes are integral multiples or divi-
sors of each other.

The picture below shows two data files with two ex-
tents allocated within each. The tiny region at the
beginning of each data file represents the data file
overhead associated with each data file.15

15 The amount of data file overhead is one Oracle block if
you’re using the UNIX file system; it’s two Oracle blocks
if you’re using raw devices.

Configuring Oracle for VLDB • 27

Oracle System Performance Group Technical Paper, March 7, 1996

abc01.dbf

B1

B2

abc02.dbf

B3

S1

F1

In this example, the big extents B1, B2, and B3 are
sized so that each data file can contain exactly two
extents with no space waste. The data file called
abc01.dbf contains exactly two of these big extents,
which fill the file nicely. In abc02.dbf, Oracle
Server allocated a small extent, denoted here as S1,
in the same datafile with the big extent B3. The re-
maining free space, labeled F1 here, is quite large—
almost half the data file—but not large enough to
contain a standard large extent the size of B1, B2,
and B3.

The S1 extent is a space waste irritant because its
size is different from the size of B3, which left the
huge wasted chunk of free space (F1) in the ta-
blespace. The fact that the size of S1 is not an
integral divisor of the size of B3 means that F1 is an
odd size that makes it even more difficult for another
extent to use all of the free space in abc02.dbf.

To understand the true impact of this type of prob-
lem on VLDBs, you need to understand that the
number of data files in an Oracle7 VLDB is bound to
be several hundred, and in Oracle8, this number will
grow to several thousand. A problem that requires
one hour of database administrator time in a 5GB
database with 20 data files will require 30 hours or
more to repair in a 100GB database with 600 data
files. The combination of bigger problems and
tougher availability requirements in VLDB envi-
ronments will completely overwhelm a database
administrator unless you can implement standards
like the ones we’re discussing here.

In tablespaces containing smaller segments, you may
want to use more than one extent size (to preserve
space, to reduce the number of data files in your da-
tabase, to reduce the number of changes to your
prepackaged applications, etc.). If you must use more
than one extent size in a tablespace, use extent sizes
that are multiples and divisors of each other to
maximize the reusability of your space.

If you must administer storage parameters for indi-
vidual database segments, you should use the Oracle

Designer/2000 storage management capabilities, or
you can buy or build an Oracle Forms or Oracle
Power Objects based application to administer stor-
age parameters. A good tool will keep you out of
SQL*Plus. It will allow you to assign a name to each
distinct combination of initial , next, and pctin-
crease values and manipulate storage parameters by
name instead of by value.

7.3 Selecting Storage Parameters

The following procedure will help you to choose
storage parameters for your VLDB that suit the con-
straints described above.

 1. Compute the size of the usable space available
in your data files (choosing standard sizes for
your data files, as recommended earlier, simpli-
fies this task). The most direct way to do this is
to query the dba_free_space dictionary view
immediately after creation of your data files.

select
 blocks, bytes
from
 dba_free_space
where
 file_name=’ filename ’

 You can forecast the size of your usable data file
space if you know your data file size by using a
table like the one shown below.

Oracle
Blocks Bytes Description

1 8,192 Oracle database block
size

262,144 2,147,483,648data file size reported
by the O/S

2 overhead per data file
(ufs=1, raw=2)

262,142 2,147,467,264usable data file size

 If you use this model, validate your forecasts
with the dba_free_space query shown above.

 2. For each tablespace, set the default storage pa-
rameters to the following values:

 • Set initial to a number that is both an inte-
gral multiple of the database block size and
an integral divisor of your usable file size.

 • Set next equal to the value of initial .

 • Set pctincrease to 0.

28 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

 The tables below show two different sets of stor-
age parameters that fit these constraints. Each
storage parameter set contains a two-block ex-
tent size to use for very small reference tables,
and the remaining storage parameters are com-
puted by calculating the extent sizes required to
split the data file into k equal-sized chunks. The
differences in these two tables are in the num-
bers chosen for k. One uses powers of 4, and the
other uses powers of 10.

n k = 4n
Extent Size in
Oracle Blocks

initial , next
Value

— 131,071 2 16,384
8 32,768 7 57,344
7 16,384 15 122,880
6 4,096 63 516,096
5 1,024 255 2,088,960
4 256 1,023 8,380,416
3 64 4,095 33,546,240
2 16 16,383 134,209,536
1 4 65,535 536,862,720
0 1 262,142 2,147,467,264

n k = 10n
Extent Size in
Oracle Blocks

initial , next
Value

— 131,071 2 16,384
4 10,000 26 212,992
3 1,000 262 2,146,304
2 100 2,621 21,471,232
1 10 26,214 214,745,088
0 1 262,142 2,147,467,264

 3. Allow segments to inherit their default storage
parameters whenever possible. Optimally, there
will be only one distinct combination of initial ,
next, and pctincrease storage parameter values
in each tablespace. For each segment not al-
lowed to use its tablespace’s default storage
parameters, set individual storage parameters as
follows:

 • Set initial to a number that is both an inte-
gral multiple of the database block size and
an integral divisor of your usable file size.

 • Set next equal to the value of initial .

 • Set pctincrease to 0 for large segments, or
to 100 for small segments.

 4. For each segment, set the other storage parame-
ters, such as pctfree, pctused, initrans , and
maxtrans, individually.

If you were to use only storage parameters from the
k = 10n table in a database with the file size shown
earlier, then you would find only six distinct storage
parameter sets in the entire database:

select distinct (
 initial_extent||’,’||
 next_extent||’,’||
 pct_increase
) "initial,next,pctincrease"
from dba_segments

initial,next,pctincrease

16384,16384,0
212992,212992,0
2146304,2146304,0
21471232,21471232,0
214745088,214745088,0
2147467264,2147467264,0

8. Rollback Segments
Rollback segments are data structures that Oracle
Server uses to provide the following services:

 • Read consistency—Rollback segments contain
transaction undo information. Oracle Server
uses undo to construct read consistent queries on
blocks that are undergoing active on-line modi-
fication during the query.

 • In-flight transaction rollback—The same undo
information is what allows Oracle Server to
provide data integrity after unscheduled instance
outage and user-requested roll-back of uncom-
pleted transactions.

A rollback segment is a circular queue of Oracle
database blocks into which foreground Oracle Server
processes write undo entries during transaction exe-
cution. The following drawing shows an Oracle
rollback segment with eight extents, each of which
contains four Oracle database blocks. The block
shown in the center of the drawing is the rollback
segment header block. The arrow pointing to the
beginning of the third block in the second extent
denotes the location to which the next undo write
will take place in this rollback segment. This so-
called “write pointer” sweeps the rollback segment
in a clockwise direction, reusing rollback segment
blocks as the pointer wraps around.

Configuring Oracle for VLDB • 29

Oracle System Performance Group Technical Paper, March 7, 1996

8.1 Rollback Segment Size

The key constraints for sizing rollback segments
properly are:

 • Small enough to cache—Rollback segment
blocks page in and out of the SGA by the same
LRU rules that govern other database blocks.
Large rollback segments dirty large portions of
the database block buffer cache, and they flush
out large numbers of other blocks (like index
branch blocks) that improve application per-
formance. The increased buffer cache page
faulting incurred by large rollback segments not
only reduces your system’s cache hit ratio, it
also dramatically increases the CPU and I/O
loads generated by checkpoints.

 • Large enough for large transactions—If your
application executes large transactions that gen-
erate hundreds of kilobytes of undo between
commits, then you’re stuck having at least one
rollback segment on your system large enough
to hold the undo generated by your largest trans-
action. Otherwise, the transaction will fail.

Oracle7 provides two capabilities that dramatically
reduce the complexity of rollback segment admini-
stration compared to some of the hard work we once
did with Oracle6: (1) rollback segment growth and
shrinkage, and (2) the ability to take a rollback seg-
ment on-line or off-line without halting the instance.
Even with these features, a big database administra-
tion challenge for some people remains the
maintenance of rollback segments for mixed OLTP
and batch processing. The key tools for minimizing
negative impacts of rollback segment maintenance
upon performance are:

 • Application design—Design programs that do
large amounts of DML (especially inserts) so
that they exploit Oracle7.3’s unrecoverable
DML capabilities wherever possible. For trans-
actions that must be executed through the
standard SQL engine, design your application to
perform frequent interim commits. If you can’t
do this, then at least direct large transactions’
undo to a specifically denoted large rollback

segment using the set transaction use rollback
segment syntax.

 • Job scheduling—If you must run batch pro-
grams that do a lot of DML without interim
commits (e.g., with a pre-packaged application
that you cannot customize), then schedule your
batch jobs so that their undo generation will not
compete with high concurrency activity in the
SGA. To minimize consistent-mode read per-
formance overhead and to prevent snapshot too
old errors, you must also schedule long-running
query jobs to run at times when concurrent DML
activity is not occurring on the queried seg-
ments.

You can use the following method to size your roll-
back segments optimally for your system.

 1. Make all of your on-line rollback segments the
same size. You may wish to keep a few specially
sized rollback segments off-line to use in special
time windows dedicated to batch processing. If
you do this, then at the beginning of the batch
window, you will take your small OLTP rollback
segments off-line and bring your batch rollback
segments on-line. You’ll run your batch and
then reverse the setup process to prepare your
database for the next window’s OLTP activity.

 2. Select the rollback segment size that is just large
enough to contain the undo for some small
number k of simultaneous executions of the
largest transaction that you will execute in the
window when this rollback segment is on-line.
The criterion for selecting k is to minimize the
number of blocks in the buffer cache dedicated
to rollback segment storage. If your largest
transaction generates less than about a database
block of undo, then choose k = 4, 5, …, 10. If
your largest transaction generates hundreds of
kilobytes of undo, then choose k < 4, and have a
talk with the people who designed your applica-
tion.

 3. Set the minextents value between 8 and 20 for
each rollback segment, and set optimal to the
appropriate value to ensure that rollback seg-
ments do not shrink below 8 to 20 extents. Note
that having this large a value of minextents
implies that your rollback segment extents will
be very small. Using multiple extents in rollback
segments reduces the frequency of segment
growth and shrinkage events [Millsap (1995c)].

30 • Cary V. Millsap

Oracle System Performance Group Technical Paper, March 7, 1996

8.2 Rollback Segment Quantity

The constraints on rollback segment quantity are
similar to the constraints on rollback segment size:

 • Few enough to cache—Having too many roll-
back segments has the same ill effects on SGA
page faulting and checkpoint processing as
having rollback segments that are too large.

 • Many enough to avoid contention—Having too
few rollback segments causes contention on the
Oracle Server transaction table that is stored in
a rollback segment’s header block. You can de-
tect rollback segment contention by finding a
non-zero number of undo header waits in the
v$waitstat dynamic performance table.

Thus, you must create enough rollback segments to
prevent undo header waits, but never more than your
instance’s maximum number of concurrently active
transactions. You can estimate the number of roll-
back segments your system will require if you do not
yet have operational measurements on the applica-
tion, by using the following process.

 1. Choose a confidence interval C, where 0 <C< 1,
for your prediction. For example, if you want a
90-percentile estimate, then choose C= 0.90.

 2. Estimate the expected number of active users on
the system at a peak load time. Call this num-
ber n.

 3. Estimate the probability that any one transaction
will be active at an arbitrarily chosen moment.
Call this probability p.

 4. Find the smallest value of x for which

 P X x C() ,≤ >

 where

 P X x P X k
k

x

() (),≤ = =
=

∑
1

 and P(X = x) is Bernoulli’s binomial distribution
function, defined as

 P X x
n

x n x
p px n x()

!

!() !
() .= =

−
− −1

 If you have Excel or a similar tool, you can find
the value of x very easily, as shown in Figure 7.

 5. After your system operates for a while, you can
fine-tune your number of rollback segments by
monitoring v$waitstat. If you have undo header
waits, you can solve the problem by adding roll-

back segments. If you do not have undo header
waits, then you may be able to drop one or more
rollback segments without impacting system
performance.

9. Conclusions
To implement Oracle Server successfully for very
large databases, you must know your requirements,
and you must know your technology. In this paper, I
have identified several configuration issues that can
prevent a system from ever achieving the expecta-
tions that have been placed upon it. At the same
time, I have tried to provide a structured way of
thinking about technology to highlight the trade-off

n= 170, p= 0.05

x P(X = x) P(X ≤ x)

0 0.000 0.000
1 0.001 0.002
2 0.006 0.008
3 0.019 0.027
4 0.042 0.069
5 0.074 0.143
6 0.106 0.249
7 0.131 0.381
8 0.141 0.521
9 0.133 0.655

10 0.113 0.768
11 0.086 0.854
12 0.060 0.915
13 0.039 0.953
14 0.023 0.976
15 0.012 0.988
16 0.006 0.995
17 0.003 0.998
18 0.001 0.999
19 0.001 1.000

Total 1.000

 Figure 7. Estimating the required number of on-
line rollback segments for OLTP. In this exam-
ple, if we have 170 concurrent users, each of
whom executes one 3-second transaction once a
minute, then having 12 rollback segments will
provide one rollback segment per concurrently
active transaction 90% of the time. This table
was created in Excel using the binomdist func-
tion.

Configuring Oracle for VLDB • 31

Oracle System Performance Group Technical Paper, March 7, 1996

decisions that ultimately determine what you really
want your requirements to be.

There is no single perfect general configuration for
VLDB, because different owners of different systems
will always have different goals and priorities. The
contribution I have tried to make is to identify the
Oracle Server architect’s most important trade-off
constraints and give the reader some accurate infor-
mation to help make wise decisions in the pursuit of
his or her perfect system.

Acknowledgments
My sincerest thanks go to the following friends for
their time and their enlightening comments: Do-
minic Delmolino, Greg Doherty, Tim Gorman, Todd
Guay, Deepak Gupta, Gary Hallmark, Andrew Hold-
sworth, Phil Joel, Anjo Kolk, Mark Pavkovic,
Richard Powell, Lyn Pratt, Willis Ranney, Jeff Seely,
Craig Shallahamer, Hank Tullis, Hugh Ujhazy, Peter
Utzig, Mitch Wallace, and Graham Wood.

References
CHEN, P.; LEE, E.; GIBSON, G.; KATZ, R.; PATTERSON, D.

1994. “RAID: high-performance, reliable secondary
storage” in ACM Computing Surveys, Vol. 26 No. 2
(Jun 1994).

GUI, JEFFREY. 1993. “OLTP and System Reliability” in
OLTP Handbook, edited by Gary McClain, Inter-
text/McGraw-Hill, New York NY.

MAULIK , B.; PATKAR, S. 1995. “Outage recovery timings”
in Technical Reports Compendium Vol. I (Dec 1995).
Oracle internal document.

MILLSAP, C. 1995a. “Optimal Flexible Architecture: Ora-
cle7 for Open Systems, Part 1” in Oracle Magazine,
Vol. IX No. 5 (Sep/Oct 1995): 65–76.

MILLSAP, C. 1995b. “Optimal Flexible Architecture: Ora-
cle7 for Open Systems, Part 2” in Oracle Magazine,
Vol. IX No. 6 (Nov/Dec 1995): 54–65.

MILLSAP, C. 1995c. Oracle7 Server Space Management.
Oracle internal document.

MILLSAP, C. 1996. Selecting the Optimal Oracle Database
Block Size. Oracle internal document.

Oracle7 Server Administrator’s Guide. 1996. Oracle stan-
dard product documentation, Redwood Shores CA.

Oracle7 Server Concepts Manual. 1996. Oracle standard
product documentation, Redwood Shores CA.

SEELY, J. 1995. Oracle Disaster Recovery System (Oracle
DRS). Oracle internal document.

TO, L. 1995. “Outage prevention, detection, and repair” in
Technical Reports Compendium Vol. I (Dec 1995).
Oracle internal document.

Understanding Disk Arrays. 1995. Sun Microsystems
white paper, Mountain View CA.

About the Author
Cary Millsap is the director of Oracle Corporation’s
System Performance Group. His team is responsible
for building new capabilities for Oracle to deliver
into its high-end technical market for large, distrib-
uted, high-performance, high-availability systems.
The System Performance Group serves customers
worldwide in the areas of performance management
and maintenance, operational procedure design, and
system architecture design.

